II Year	- II Semester	
---------	---------------	--

L	Т	Р	С
4	0	0	3

THERMAL ENGINEERING – I

UNIT – I

Objectives: To make the student learn and understand the reasons and affects of various losses that occur in the actual engine operation.

Actual Cycles and their Analysis: Introduction, Comparison of Air Standard and Actual Cycles, Time Loss Factor, Heat Loss Factor, Exhaust Blowdown-Loss due to Gas exchange process, Volumetric Efficiency. Loss due to Rubbing Friction, Actual and Fuel-Air Cycles of CI Engines.

UNIT – II

Objectives: To familiarize the student with the various engine systems along with their function and necessity.

I. C. ENGINES : Classification - Working principles, Valve and Port Timing Diagrams, - Engine systems – Fuel, Carburettor, Fuel Injection System, Ignition, Cooling and Lubrication, principle of wankle engine, principles of supercharging and turbo charging.

UNIT – III

Objectives: To learn about normal combustion phenomenon and knocking in S.I. and C.I. Engines and to find the several engine operating parameters that affect the smooth engine operation.

Combustion in S.I. Engines : Normal Combustion and abnormal combustion – Importance of flame speed and effect of engine variables – Types of Abnormal combustion, pre-ignition and knocking (explanation of) – Fuel requirements and fuel rating, anti knock additives – combustion chamber – requirements, types.

Combustion in C.I. Engines : Four stages of combustion – Delay period and its importance – Effect of engine variables – Diesel Knock– Need for air movement, suction, compression and combustion induced turbulence – open and divided combustion chambers and nozzles used – fuel requirements and fuel rating.

UNIT – IV

Objectives: To make the student learn to perform testing on S.I and C.I Engines for the calculations of performance and emission parameters.

Measurement, Testing and Performance: Parameters of performance - measurement of cylinder pressure, fuel consumption, air intake, exhaust gas composition, Brake power – Determination of frictional losses and indicated power – Performance test – Heat balance sheet and chart.

UNIT – V

Objectives: To make students learn about different types of compressors and to calculate power and efficiency of reciprocating compressors.

COMPRESSORS – Classification –positive displacement and roto dynamic machinery – Power producing and power absorbing machines, fan, blower and compressor – positive displacement and dynamic types – reciprocating and rotary types.

Reciprocating: Principle of operation, work required, Isothermal efficiency, volumetric efficiency and effect of clearance, multi stage compression, undercooling, saving of work, minimum work condition for two stage compression.

UNIT VI

Objectives: To make students learn mechanical details, and to calculate power and efficiency of rotary compressors

Rotary (**Positive displacement type**) : Roots Blower, vane sealed compressor, Lysholm compressor – mechanical details and principle of working – efficiency considerations.

Dynamic Compressors: Centrifugal compressors: Mechanical details and principle of operation – velocity and pressure variation. Energy transfer-impeller blade shape-losses, slip factor, power input factor, pressure coefficient and adiabatic coefficient – velocity diagrams – power.

Axial Flow Compressors: Mechanical details and principle of operation – velocity triangles and energy transfer per stage degree of reaction, work done factor - isentropic efficiency- pressure rise calculations – Polytropic efficiency.

Text Books:

- 1. I.C. Engines / V. Ganesan- TMH
- 2. Heat engines, Vasandani & Kumar publications Thermal

References:

- 1. Thermal Engineering / RK Rajput/ Lakshmi Publications
- 2. IC Engines M.L.Mathur & R.P.Sharma Dhanpath Rai & Sons.
- 3. I.C.Engines–AppliedThermosciences–C.R.Ferguson&A.T.Kirkpatrick-2ndEdition-Wiley Publ
- 4. I.C. Engines J.B.Heywood /McGrawHIII.
- 5. Thermal Engineering R.S.Khurmi & J.S.Gupta- S.chand Publ
- 6. Thermal Engineering / PL Ballaney, Khanna Publishers